在定义卷积时为什么要对其中一个函数进行翻转?

两个函数,翻转其中一个,再滑动求积分,叫卷积(convultion);不翻转就滑动求积分,叫做互相关(cross-correlation)。如果其中之一是偶函数,那么卷积和互相关效果相同。从定义上看,翻转这个操作就是一步操作而已,具体的物理意义只能在应用中找到。

最直观的理解就是:卷积是拉链操作。请想象一条拉链:把它底端固定在一起,上边左右完全拉开,扯直,使得固定端处于中心,那么左边这半条的顶端,相对于右边半条来说完全相反。而当你保持其中一边不动,把拉链拉起来的操作,会使得另一边翻转过来(当然拉链其实是旋转),也就是乘了 -1。

以信号处理为例,卷积意味着把输入信号在时间轴上翻转,然后跟信号处理系统的描述方程(冲激响应)叠加积分。为什么要翻转?因为这样才符合现实:输入信号的 0 秒先跟冲激响应的 0 秒叠加,然后输入信号的 1 秒和冲激响应的 1 秒叠加,以此类推。当你把这两个函数分别画出来上下并列的时候,它们就好象合并的拉链,0 点处在同一侧,而卷积实际上是要把它们画在同一个轴上滑动,同时却必须保证输入信号的 0 点先遇到冲激响应函数的 0 点——怎么办呢?就好像拉链被拉开了:翻转一下。
原发布于 https://www.zhihu.com/question/20500497/answer/15302227